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A Conceptual and Practical View of 
Atmosphere and Ocean Climate Model Components

Dynamical Core
solves for mass, 

pressure, momentum

Tracer Transport
given a mass flux, 
evolve tracer field 
forward in time

Dynamical Core
solves for mass, 

pressure, momentum

Physical 
Parameterizations

source terms for 
everything that is
important, but not

resolved.
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Transport ....

DT

Dt
= 0

D

Dt
≡ ∂t + �u · ∇

∂tρ+∇ · (ρ�u) = 0

∂t(ρT ) +∇ · (ρT�u) = 0

advective form flux form

Note! Coupled to the mass variable.



SCA, April 4, 2012, Las Vegas, Nevada

Importance of Transport in the Ocean and Atmosphere

Transport is arguably
the single most important
process in the climate system.

The net excess of energy 
entering the climate system in 
the tropics is moved 
polewards in the ocean and 
atmosphere primarily through 
transport.

The transport of momentum 
by the turbulent ocean/
atmosphere flows play an O
(1) role in determining mean 
currents/winds of the ocean/
atmosphere.

The transport of trace-constituents (water vapor, 
aerosols, algae, plankton, etc) are essential for even 
the most basic description of the climate system.
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What attributes do we seek in our transport schemes?

2. Accurate in the sense that the error goes to zero as grid-spacing and time-step 
raised to some power (preferably greater than one!)

3. Computationally efficient.  We are planning for O(100) tracers. Computing 
climate solutions is a computational grand challenge. Within that challenge, 
transport is a significant “user” of FLOPs.

1. Conservative, both locally and globally.1. Conservative, both locally and globally.

�

dΩ

∂t(ρT )dΩ = −
�

dΩ

∇ · (ρT�u)dΩ

1. Locally conservative (and, thus, globally conservative) for some domain     .         Ω

4. Monotone in the sense that the process of transport does not create new 
extrema.

max [T (�x+ �r, tn)] ≥ T (�x, tn+1) ≤ min [T (�x+ �r, tn)]

These attributes are in conflict.
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And we want all of these properties to hold on multi-scale meshes.
(i.e. meshes composed of arbitrary, convex polygons in 2D)

• Ju, L., T. Ringler and M. Gunzburber, 2009, Voronoi Tessellations and their Application to Climate and Global 
Modeling, Numerical Techniques for Global Atmospheric Models, Lecture Notes in Computational Science. (pdf).

http://public.lanl.gov/ringler/files/CVT_Climate_09.pdf
http://public.lanl.gov/ringler/files/CVT_Climate_09.pdf
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Context: Building a Global, Multi-Scale 
Climate System Model

1. MPAS is an unstructured-grid approach to climate 
system modeling.

2. MPAS supports both quasi-uniform and variable 
resolution meshing of the sphere using quadrilaterals, 
triangles or Voronoi tessellations.

3. MPAS is a software framework for the rapid 
prototyping of single-components of climate system 
models (atmosphere, ocean, land ice, etc.).

4. MPAS offers the potential to explore regional-scale 
climate change within the context of global climate 
system modeling. Multiple high-resolution regions are 
permitted.

5. MPAS is currently structured as a partnership between 
NCAR MMM and LANL COSIM, where we intend to 
distribute our models through open-source, 3rd-party 
facilities (e.g. Sourceforge).
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A low-resolution version
of the North Atlantic mesh
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OK, how should we do transport?
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Alternative #1: Traditional Reconstruction with FCT

dΩ

ρT

�

dΩ

∇ · (ρT�u)dΩ =

�

dl

ρT�u · �dl ≈
N�

i=1

ρ̂eT̂e�ue · �dle =
N�

i=1

Fe

Fh
e , F

l
e

With traditional flux-corrected
transport methods, we have two
flux estimates: a high-order estimate 
and a low-order estimate.

Both fluxes are conservative by 
construction. The low-order flux 
also guarantees monotonicity.

We attempt to take as much of the
high-order flux as possible while not
violating monotonicity.

Relatively expensive and cost is 
linear with number of tracers. Fe = γFh

e + (1− γ)F l
e
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Alternative #2: Traditional Semi-Lagrange Transport

interpolate data
to departure point

Tn+1Tn

No sense of cell support, so conservation 
is hard to enforce. Also, not coupled 

to mass equation.

Tn+1 = TnAlong a characteristic: 
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Alternative #2a: Cell-Integrated Semi-Lagrange Transport

dΩn+1

dΩn

Trace element back
in time and integrate

over departure region.

Requires polygon intersection 
software. Conservation is easier

than traditional semi-Lagrange, but
still not trivial.

�

dΩn+1

(ρT )n+1 dΩ =

�

dΩn

(ρT )n dΩ
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Alternative 3: 
Incremental Remap
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Alternative 3: 
Incremental Remap
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Alternative 3: 
Incremental Remap
�

dl

ρT�u · �dl ≈=
N�

i=1

Fe

Use cell-averaged data 
from time level n to

reconstruct fluxes over 
departure region.

Requires polygon 
intersection software. 
Conservation is easy.

Monontonicity enforced
at reconstruction (so no

need for FCT).
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• Lipscomb, W.H. and T. Ringler, 2005: An Incremental Remapping Transport Scheme on a Spherical 
Geodesic Grid, Monthly Weather Review, 133, 2335-2350. doi10.1175/MWR2983.1(link)

Incremental remap compares well to FCT.

Exact centered-in-space

FCT

centered-in-space

incremental-remap

http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2FMWR2983.1
http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2FMWR2983.1
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Our preferred alternative: Incremental Remap at High-Order

T (�x, tn) =
N�

j=1

cnk,jβk,j(�x)

Assume a functional structure of the tracer within each convex polygon:

βk,j(�x) ∈ {1, x, y, x2, xy, y2}
With, for example, a basis of the form:

cnk,j

Need a method for updating basis coefficients:
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∂t(ρT ) +∇ · (ρT�u) = 0

Given our tracer transport equation:

�

Ωk

�
(φk,iρT )

n+1 − (φk,iρT )
n
�
dΩ+

tn+1�

tn

�

∂Ωk

φk,iρT�u · �ndsdt =
tn+1�

tn

�

Ωk

ρT
Dφk,i

Dt
dΩdt

Integrate over the space-time element ∂Ωk,f × [tn, tn+1]

Developing the Incremental Remapping at High Order (IRHO) method:

Multiply through by a test function and rearrange:

∂t(φk,iρT ) +∇ · (φk,iρT�u) = ρT
Dφk,i

Dt
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Breaking the method into two systems:

∂t(φk,iρT ) +∇ · (φk,iρT�u) = ρT
Dφk,i

Dt
dΩdt

Instead of solving this:

∂t(φk,iρT ) +∇ · (φk,iρT�u) = 0

Dφk,i

Dt
= 0

We choose this:

Note that the original incremental remap scheme is included here.
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T (�x, tn) =
N�

j=1

cnk,jβk,j(�x)

�

Ωk

�
(φk,iρT )

n+1 − (φk,iρT )
n
�
dΩ+

�

f

�

Ω�
k,f

(φk,iρT )
n dΩ = 0

Ω�
k,f = ∂Ωk,f × [tn, tn+1]

flux is computed by integrating over swept region

φk,i(�x, t)
Still need a method for determining how to evaluate the test function:

Solving Part 1 of the IRHO system:
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φk,i(�x, t) = βk,i(�Γ(�x, t))

�Γ(�x, t) = �x+

tn+1�

t

�u(�Γ(�x, ξ), ξ) dξ

�Γ(�x, t) = �x+ (tn+1 − t)�u

Solving Part II of the IRHO system:
Test function evaluation must satisfy:

Dφk,i

Dt
= 0

We satisfy this requirement with:

T (�x, tn) =
N�

j=1

cnk,jβk,j(�x)

recall
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Cell integration          

φk,i(�x, t) = βk,i(�Γ(�x, t))

�

Ωk

�
(φk,iρT )

n+1 − (φk,iρT )
n
�
dΩ

T (�x, tn) =
N�

j=1

cnk,jβk,j(�x)



SCA, April 4, 2012, Las Vegas, Nevada

Flux calculation:
back trajectories          
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Flux calculation:
compute          Ω�

k,f

requires a external polygon
intersection package
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Flux calculation:
quadrature

Note: Intersection of two convex 
polygons is a convex polygon.

expand
cell basis

here

evaluate
test function

here

�

f

�

Ω�
k,f

(φk,iρT )
n dΩ
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Deformation of a Square (period=4):
Exact solution
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Deformation of a Square (period=4):
Tracer solution with without limiting (on a quad mesh)
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Deformation of a Square (period=4):
Tracer solution with limiting
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I have not talked about the limiting of the flux calculation, 
but it is critical to the method. Importantly, the limiting 
does not reduce accuracy when the solution is smooth.

Deformation of a Gaussian Bump
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Solid Body Rotation:
One revolution of slotted cylinder
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In closing, let us recall the attributes we seek:

2. Accurate in the sense that the error goes to zero as grid-spacing and time-step 
raised to some power (preferably greater than one!)

3. Computationally efficient.  We are planning for O(100) tracers. Computing 
climate solutions is a computational grand challenge. Within that challenge, 
transport is a significant “user” of FLOPs

�

dΩ

∂t(ρT )dΩ = −
�

dΩ

∇ · (ρT�u)dΩ

1. Locally conservative (and, thus, globally conservative) for some domain     .         Ω

4. Monotone in the sense that the process of transport does not create new 
extrema.

max [T (�x+ �r, tn)] ≥ T (�x, tn+1) ≤ min [T (�x+ �r, tn)]
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Thoughts on Incremental Remapping at High-Order

1. Conservative by construction

2. Arbitrary order of accuracy on convex polygons

3. Accommodates large CFL by construction

5. Expensive to do the first tracer!

4. We know where each part of the tracer flux departs
and arrives, so the limiting is precise.
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Thanks!
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Alternative #3:  Flux-Form Semi-Lagrange
(aka Incremental Remap)


